峰值功率与平均功率 — 如何选择合适的转换器
时间:2022-02-21 11:22来源:
摘要:许多工程师倾向选择「余量」充足的电源,例如一个应用消耗5W的功率,那么会选择10W的电源以应付最坏的情况。这背后的理由是除了需要一定的安全系数才能获得高可靠性,也要确保以后在应用电路中添加功能时还有足够的电源容量来应对额外的负载。
许多工程师倾向选择「余量」充足的电源,例如一个应用消耗 5W 的功率,那么会选择 10W 的电源以应付最坏的情况。这背后的理由是除了需要一定的安全系数才能获得高可靠性,也要确保以后在应用电路中添加功能时还有足够的电源容量来应对额外的负载。这些都是难以反驳的有力论点,但它并非总是电源应用最有效的方法。
以 10W AC/DC 电源(例如 RAC10-12SK/277)的典型效率/负载图为例:
图 1:10W AC/DC 转换器的效率/负载图
效率曲线图显示负载超过 20% 时维持平坦,表现很好。但到了 50% 负载 (5W) 时,效率根据电源电压的不同在 77% 到 81% 之间变化(图 1,橘线)。在 100% 负载下,无论何种输入电压效率都维持在 83% 不变(图 1,蓝线)。这种差异看起来可能并不明显,但 77% 的效率就意味着 30% 的供应能量被浪费为热量,而 83% 的效率代表只有 20% 被浪费,大幅降低了耗散功率。 如果该电源替换成同等的 5W电源,例如 RAC05-12SK/277,那么效率将不受电源电压影响保持在 83%(图 2)。
图 2. 5W AC/DC 转换器的效率/负载图
另外,它不仅工作效率更高,5W电源的尺寸也只有10W的一半而且还更便宜:这是双赢!
峰值功率与平均功率
您或许会问,那峰值功率呢?在最坏的连续负载条件下,电源要如何应对额外的短期峰值过载?
这里的关键词是「最坏的情况」。在正常运行期间负载通常会低于功率需求。如果转换器在最坏的负载情况下连续工作,它仍然可以轻松处理这样的功率水平,而实际上负载也不会那么高。这为转换器提供了一些「热余量」来处理高于连续工作负载的短期峰值过载。
例如,RAC05-SK/277 规格书提供了峰值负载能力的计算公式(图 3):
图3. 峰值负载计算公式(源自规格书)
这里的一个重要的数值是 PP – 峰值输出功率。RAC05-SK/277 的标称输出功率为 5W,而实际上它可以在不触发过载保护的情况下提供 6W。过载如果低于标称负载的 120%,转换器内的器件温度是限制因子。如果转换器有足够的时间在过载之后冷却,它就可以承受多次过载或循环过载,同时持续提供稳定的输出电压。
如要应付非常短暂且严重的过载,可以安装一个外部输出电容来提供所需的峰值电流并阻止转换器启动过载保护。这对无线连接微控制器等应用来说很实用,虽然传输突发期间的电流峰值发生的时间既短功率又高,但平均功耗要低得多(图 4)。在这种情况下,电源可以针对提供平均功率而不是峰值功率来设计。
图 4:支持 WLAN 微控制器的典型电流消耗曲线
到目前为止我们已经探讨了 AC/DC 转换器,但也可以用相同的方式分析 DC/DC 转换器。它们之间的区别在于 DC/DC 转换器是专为在 80-100% 的输出功率范围内连续工作所设计的,它们的效率曲线在低负载时会下降得更快,因此低输出电流并不代表低工作温度。一般来说,应该避免 5W 负载使用 10W DC/DC 转换器,除非遇到除了降额以外没有其他方法可以满足所需的工作温度范围的情况。例如,RS12-Z 系列采用紧凑 SIP8 外壳 (21.8mm x 9.6mm) 提供出色的 12W 隔离功率。
RS12-Z 转换器使用自然对流冷却和标称 24V 电源可在高达 75°C 的温度下全功率工作,而负载降额 50% 时工作温度为 -40°C 至 +85°C。负载减半却只提供 +10°C 的环境温度范围,这是因为转换器不再以最高效率工作。即使如此,仅采用自然对流冷却就可在全工业温度范围内工作的 SIP8 封装 6W 转换器仍然大幅优于竞争对手,因为后者必须求助于强制空气冷却才能提供相同的输出功率。
过流保护
许多低成本的 AC/DC 和 DC/DC 转换器都有非常基本的输出过流保护电路来侦测内部电流取样电阻器的电压降(图 5)。
图 5:基本的过流保护。电流取样电阻器两端的电压超过 0.7V 时会导通NPN 晶体管并断开功率 FET 的栅极驱动。
这种保护电路虽然简单而且作为短路保护非常有效,但触发点在很大程度上是由电流取样电阻器的容差和 NPN 晶体管的 VBE 阈值电压而定,造成过流限制的变化很大。因此要确定器件值以便在 100% 负载下过流保护不会在环境工作温度范围以上时误触发。这使转换器在室温下具有非常宽的过载容量 — 通常高达标称输出功率的 140%。这种转换器可以在连续满载的情况下可靠工作,同时仍有很大的余量来应付任何过载状况。
这个概述有一个例外,DC/DC 开关稳压器通常以较高的开关频率工作来缩小器件尺寸(降压转换器增加频率会减少输出电感和输出电容),因此如果遇到突发峰值过载时会有较少的功率储备。电流取样电阻器通常与主控制器 IC 集成在一个芯片上,具有更严格的电阻值容差从而降低过流限制的变化。此外,大多数开关稳压器控制器也使用精确的比较器输出来监测逐周期电流限制,而不是依赖不精确的 Vbe 结点阈值电压,因此达到过流或短路保护的极限时它们会立即关闭。由此可见,应该考虑 DC/DC 开关稳压器在最坏情况下的峰值负载条件而非平均负载。
结论
超规格过度指定 AC/DC 或 DC/DC 转换器来应付瞬态峰值负载,就好像它们是一个连续状态,不但会降低效率同时还可能导致电源供应量超出必要范围。通过了解应用的平均、最坏情况和峰值负载等条件,才能选择最适当的解决方案来确保以较低的成本提供可靠的电源电压。我们的技术支持工程师或技术销售团队可以为您的应用提供最好的建议。
以 10W AC/DC 电源(例如 RAC10-12SK/277)的典型效率/负载图为例:
图 1:10W AC/DC 转换器的效率/负载图
效率曲线图显示负载超过 20% 时维持平坦,表现很好。但到了 50% 负载 (5W) 时,效率根据电源电压的不同在 77% 到 81% 之间变化(图 1,橘线)。在 100% 负载下,无论何种输入电压效率都维持在 83% 不变(图 1,蓝线)。这种差异看起来可能并不明显,但 77% 的效率就意味着 30% 的供应能量被浪费为热量,而 83% 的效率代表只有 20% 被浪费,大幅降低了耗散功率。 如果该电源替换成同等的 5W电源,例如 RAC05-12SK/277,那么效率将不受电源电压影响保持在 83%(图 2)。
图 2. 5W AC/DC 转换器的效率/负载图
另外,它不仅工作效率更高,5W电源的尺寸也只有10W的一半而且还更便宜:这是双赢!
峰值功率与平均功率
您或许会问,那峰值功率呢?在最坏的连续负载条件下,电源要如何应对额外的短期峰值过载?
这里的关键词是「最坏的情况」。在正常运行期间负载通常会低于功率需求。如果转换器在最坏的负载情况下连续工作,它仍然可以轻松处理这样的功率水平,而实际上负载也不会那么高。这为转换器提供了一些「热余量」来处理高于连续工作负载的短期峰值过载。
例如,RAC05-SK/277 规格书提供了峰值负载能力的计算公式(图 3):
图3. 峰值负载计算公式(源自规格书)
这里的一个重要的数值是 PP – 峰值输出功率。RAC05-SK/277 的标称输出功率为 5W,而实际上它可以在不触发过载保护的情况下提供 6W。过载如果低于标称负载的 120%,转换器内的器件温度是限制因子。如果转换器有足够的时间在过载之后冷却,它就可以承受多次过载或循环过载,同时持续提供稳定的输出电压。
如要应付非常短暂且严重的过载,可以安装一个外部输出电容来提供所需的峰值电流并阻止转换器启动过载保护。这对无线连接微控制器等应用来说很实用,虽然传输突发期间的电流峰值发生的时间既短功率又高,但平均功耗要低得多(图 4)。在这种情况下,电源可以针对提供平均功率而不是峰值功率来设计。
图 4:支持 WLAN 微控制器的典型电流消耗曲线
到目前为止我们已经探讨了 AC/DC 转换器,但也可以用相同的方式分析 DC/DC 转换器。它们之间的区别在于 DC/DC 转换器是专为在 80-100% 的输出功率范围内连续工作所设计的,它们的效率曲线在低负载时会下降得更快,因此低输出电流并不代表低工作温度。一般来说,应该避免 5W 负载使用 10W DC/DC 转换器,除非遇到除了降额以外没有其他方法可以满足所需的工作温度范围的情况。例如,RS12-Z 系列采用紧凑 SIP8 外壳 (21.8mm x 9.6mm) 提供出色的 12W 隔离功率。
RS12-Z 转换器使用自然对流冷却和标称 24V 电源可在高达 75°C 的温度下全功率工作,而负载降额 50% 时工作温度为 -40°C 至 +85°C。负载减半却只提供 +10°C 的环境温度范围,这是因为转换器不再以最高效率工作。即使如此,仅采用自然对流冷却就可在全工业温度范围内工作的 SIP8 封装 6W 转换器仍然大幅优于竞争对手,因为后者必须求助于强制空气冷却才能提供相同的输出功率。
过流保护
许多低成本的 AC/DC 和 DC/DC 转换器都有非常基本的输出过流保护电路来侦测内部电流取样电阻器的电压降(图 5)。
图 5:基本的过流保护。电流取样电阻器两端的电压超过 0.7V 时会导通NPN 晶体管并断开功率 FET 的栅极驱动。
这种保护电路虽然简单而且作为短路保护非常有效,但触发点在很大程度上是由电流取样电阻器的容差和 NPN 晶体管的 VBE 阈值电压而定,造成过流限制的变化很大。因此要确定器件值以便在 100% 负载下过流保护不会在环境工作温度范围以上时误触发。这使转换器在室温下具有非常宽的过载容量 — 通常高达标称输出功率的 140%。这种转换器可以在连续满载的情况下可靠工作,同时仍有很大的余量来应付任何过载状况。
这个概述有一个例外,DC/DC 开关稳压器通常以较高的开关频率工作来缩小器件尺寸(降压转换器增加频率会减少输出电感和输出电容),因此如果遇到突发峰值过载时会有较少的功率储备。电流取样电阻器通常与主控制器 IC 集成在一个芯片上,具有更严格的电阻值容差从而降低过流限制的变化。此外,大多数开关稳压器控制器也使用精确的比较器输出来监测逐周期电流限制,而不是依赖不精确的 Vbe 结点阈值电压,因此达到过流或短路保护的极限时它们会立即关闭。由此可见,应该考虑 DC/DC 开关稳压器在最坏情况下的峰值负载条件而非平均负载。
结论
超规格过度指定 AC/DC 或 DC/DC 转换器来应付瞬态峰值负载,就好像它们是一个连续状态,不但会降低效率同时还可能导致电源供应量超出必要范围。通过了解应用的平均、最坏情况和峰值负载等条件,才能选择最适当的解决方案来确保以较低的成本提供可靠的电源电压。我们的技术支持工程师或技术销售团队可以为您的应用提供最好的建议。
免责声明:本文若是转载新闻稿,转载此文目的是在于传递更多的信息,版权归原作者所有。文章所用文字、图片、视频等素材如涉及作品版权问题,请联系本网编辑予以删除。
上一篇:电动汽车充电桩的内部转换器
下一篇:高功率密度内置电源
我要投稿
近期活动
- 【趣味活动】PI 无刷直流电机专题时间:2024年11月25日 - 2024年12月31日[立即参与]
- 仪器使用操作视频教程时间:2024年01月01日 - 2024年12月31日[立即参与]
- 2024年安森美(onsemi)在线答题活动(10月汽车相关)时间:2024年10月01日 - 2024年10月31日[查看回顾]
- PI 智能家居,用“芯”定义为来时间:2024年08月01日 - 2024年09月30日[查看回顾]
- ADI&骏龙趣味闯关活动时间:2024年07月11日 - 2024年10月31日[查看回顾]
分类排行榜
- 汽车电子电源行业可靠性要求,你了解多少?
- 内置可编程模拟功能的新型 Renesas Synergy™ 低功耗 S1JA 微控制器
- Vishay 推出高集成度且符合 IrDA® 标准的红外收发器模块
- ROHM 发布全新车载升降压电源芯片组
- 艾迈斯半导体推出行业超薄的接近/颜色传感器模块,助力实现无边框智能手机设计
- 艾迈斯半导体与 Qualcomm Technologies 集中工程优势开发适用于手机 3D 应用的主动式立体视觉解决方案
- 维谛技术(Vertiv)同时亮相南北两大高端峰会,精彩亮点不容错过
- 缤特力推出全新商务系列耳机 助力解决开放式办公的噪音难题
- CISSOID 和泰科天润(GPT)达成战略合作协议,携手推动碳化硅功率器件的广泛应用
- 瑞萨电子推出 R-Car E3 SoC,为汽车大显示屏仪表盘带来高端3D 图形处理性能
编辑推荐
小型化和稳定性如何兼得?ROHM 推出超小型高输出线性 LED 驱动器 IC,为插座型 LED 驱动 IC 装上一颗强有力的 “心脏”
众所周知,LED的驱动IC担负着在输入电压不稳定的情况下,为LED提供恒定的电流,并控制恒定(可调)亮度的作用。无论是室内照明,还是车载应用,都肩负着极为重要的使命。
- 关于反激电源效率的一个疑问
时间:2022-07-12 浏览量:13975
- 面对热拔插阐述的瞬间大电流怎么解决
时间:2022-07-11 浏览量:11956
- PFC电路对N线进行电压采样的目的是什么
时间:2022-07-08 浏览量:12489
- RCD中的C对反激稳定性有何影响
时间:2022-07-07 浏览量:9968
- 36W单反激 传导7~10M 热机5分钟后超标 不知道哪里出了问题
时间:2022-07-07 浏览量:7882
- PFC电感计算
时间:2022-07-06 浏览量:5179
- 多相同步BUCK
时间:2010-10-03 浏览量:39064
- 大家来讨论 系列之二:开机浪涌电流究竟多大?
时间:2016-01-12 浏览量:44220
- 目前世界超NB的65W适配器
时间:2016-09-28 浏览量:61361
- 精讲双管正激电源
时间:2016-11-25 浏览量:134108
- 利用ANSYS Maxwell深入探究软磁体之----电感变压器
时间:2016-09-20 浏览量:108967
- 【文原创】认真的写了一篇基于SG3525的推挽,附有详细..
时间:2015-08-27 浏览量:103520