碳化硅在下一代工业电机驱动器中的作用
时间:2021-04-27 10:32来源:安森美半导体工业及云电源公司营销及战略高级经理Ali Husain
摘要:使用WBG材料如碳化硅(SiC)可制造出性能超越硅(Si)的同类产品。虽然有各种重要的机会使用这项技术,但工业电机驱动正获得最大的兴趣和关注。
国际能源署(IEA)估计,电机功耗占世界总电力的45%以上。因此,找到最大化其运行能效的方法至关重要。能效更高的驱动装置可以更小,并且更靠近电机,从而减少长电缆带来的挑战。从整体成本和持续可靠性的角度来看,这将具有现实意义。宽禁带(WBG)半导体技术的出现将有望在实现新的电机能效和外形尺寸基准方面发挥重要作用。
使用WBG材料如碳化硅(SiC)可制造出性能超越硅(Si)的同类产品。虽然有各种重要的机会使用这项技术,但工业电机驱动正获得最大的兴趣和关注。
SiC的高电子迁移率使其能够支持更快的开关速度。这些更快的开关速度意味着相应的开关损耗也将减少。它的介电击穿场强几乎比硅高一个数量级。这能实现更薄的漂移层,这将转化为更低的导通电阻值。此外,由于SiC的导热系数是Si的三倍,因此在散热方面要高效得多。因此,更容易减小热应力。
传统的高压电机驱动器会采用三相逆变器,其中Si IGBT集成反并联二极管。三个半桥相位驱动逆变器的相应相线圈,以提供正弦电流波形,随后使电机运行。逆变器中浪费的能量将来自两个主要来源-导通损耗和开关损耗。用基于SiC的开关代替Si基开关,可减小这两种损耗。
SiC肖特基势垒二极管不使用反并联硅二极管,可集成到系统中。硅基二极管有反向恢复电流,会造成开关损耗(以及产生电磁干扰,或EMI),而SiC二极管的反向恢复电流可忽略不计。这使得开关损耗可以减少达30%。由于这些二极管产生的EMI要低得多,所以对滤波的需求也不会那么大(导致物料清单更小)。还应注意,反向恢复电流会增加导通时的集电极电流。由于SiC二极管的反向恢复电流要低得多,在此期间通过IGBT的峰值电流将更小,从而提高运行的可靠性水平并延长系统的使用寿命。
因此,如果要提高驱动效率及延长系统的工作寿命时,迁移到SiC 肖特基显然是有利的。那么我们何以采取更进一步的方案呢?如果用SiC MOSFET取代负责实际开关功能的IGBT,那么能效的提升将更显著。在相同运行条件下,SiC MOSFET的开关损耗要比硅基IGBT低五倍之多,而导通损耗则可减少一半之多。
WBG方案的其他相关的好处包括大幅节省空间。SiC提供的卓越导热性意味着所需的散热器尺寸将大大减少。使用更小的电机驱动器,工程师可将其直接安装在电机外壳上。这将减少所需的电缆数量。
安森美半导体现在为工程师提供与SiC二极管共同封装的IGBT。此外,我们还有650 V、900 V和1200 V额定值的SiC MOSFET。采用这样的产品,将有可能变革电机驱动,提高能效参数,并使实施更精简。
使用WBG材料如碳化硅(SiC)可制造出性能超越硅(Si)的同类产品。虽然有各种重要的机会使用这项技术,但工业电机驱动正获得最大的兴趣和关注。
SiC的高电子迁移率使其能够支持更快的开关速度。这些更快的开关速度意味着相应的开关损耗也将减少。它的介电击穿场强几乎比硅高一个数量级。这能实现更薄的漂移层,这将转化为更低的导通电阻值。此外,由于SiC的导热系数是Si的三倍,因此在散热方面要高效得多。因此,更容易减小热应力。
SiC肖特基势垒二极管不使用反并联硅二极管,可集成到系统中。硅基二极管有反向恢复电流,会造成开关损耗(以及产生电磁干扰,或EMI),而SiC二极管的反向恢复电流可忽略不计。这使得开关损耗可以减少达30%。由于这些二极管产生的EMI要低得多,所以对滤波的需求也不会那么大(导致物料清单更小)。还应注意,反向恢复电流会增加导通时的集电极电流。由于SiC二极管的反向恢复电流要低得多,在此期间通过IGBT的峰值电流将更小,从而提高运行的可靠性水平并延长系统的使用寿命。
WBG方案的其他相关的好处包括大幅节省空间。SiC提供的卓越导热性意味着所需的散热器尺寸将大大减少。使用更小的电机驱动器,工程师可将其直接安装在电机外壳上。这将减少所需的电缆数量。
安森美半导体现在为工程师提供与SiC二极管共同封装的IGBT。此外,我们还有650 V、900 V和1200 V额定值的SiC MOSFET。采用这样的产品,将有可能变革电机驱动,提高能效参数,并使实施更精简。
免责声明:本文若是转载新闻稿,转载此文目的是在于传递更多的信息,版权归原作者所有。文章所用文字、图片、视频等素材如涉及作品版权问题,请联系本网编辑予以删除。
我要投稿
近期活动
- 【趣味活动】PI 无刷直流电机专题时间:2024年11月25日 - 2024年12月31日[立即参与]
- 仪器使用操作视频教程时间:2024年01月01日 - 2024年12月31日[立即参与]
- 2024年安森美(onsemi)在线答题活动(10月汽车相关)时间:2024年10月01日 - 2024年10月31日[查看回顾]
- PI 智能家居,用“芯”定义为来时间:2024年08月01日 - 2024年09月30日[查看回顾]
- ADI&骏龙趣味闯关活动时间:2024年07月11日 - 2024年10月31日[查看回顾]
分类排行榜
- 汽车电子电源行业可靠性要求,你了解多少?
- 内置可编程模拟功能的新型 Renesas Synergy™ 低功耗 S1JA 微控制器
- Vishay 推出高集成度且符合 IrDA® 标准的红外收发器模块
- ROHM 发布全新车载升降压电源芯片组
- 艾迈斯半导体推出行业超薄的接近/颜色传感器模块,助力实现无边框智能手机设计
- 艾迈斯半导体与 Qualcomm Technologies 集中工程优势开发适用于手机 3D 应用的主动式立体视觉解决方案
- 维谛技术(Vertiv)同时亮相南北两大高端峰会,精彩亮点不容错过
- 缤特力推出全新商务系列耳机 助力解决开放式办公的噪音难题
- CISSOID 和泰科天润(GPT)达成战略合作协议,携手推动碳化硅功率器件的广泛应用
- 瑞萨电子推出 R-Car E3 SoC,为汽车大显示屏仪表盘带来高端3D 图形处理性能
编辑推荐
小型化和稳定性如何兼得?ROHM 推出超小型高输出线性 LED 驱动器 IC,为插座型 LED 驱动 IC 装上一颗强有力的 “心脏”
众所周知,LED的驱动IC担负着在输入电压不稳定的情况下,为LED提供恒定的电流,并控制恒定(可调)亮度的作用。无论是室内照明,还是车载应用,都肩负着极为重要的使命。
- 关于反激电源效率的一个疑问
时间:2022-07-12 浏览量:13975
- 面对热拔插阐述的瞬间大电流怎么解决
时间:2022-07-11 浏览量:11956
- PFC电路对N线进行电压采样的目的是什么
时间:2022-07-08 浏览量:12489
- RCD中的C对反激稳定性有何影响
时间:2022-07-07 浏览量:9968
- 36W单反激 传导7~10M 热机5分钟后超标 不知道哪里出了问题
时间:2022-07-07 浏览量:7882
- PFC电感计算
时间:2022-07-06 浏览量:5179
- 多相同步BUCK
时间:2010-10-03 浏览量:39064
- 大家来讨论 系列之二:开机浪涌电流究竟多大?
时间:2016-01-12 浏览量:44220
- 目前世界超NB的65W适配器
时间:2016-09-28 浏览量:61361
- 精讲双管正激电源
时间:2016-11-25 浏览量:134109
- 利用ANSYS Maxwell深入探究软磁体之----电感变压器
时间:2016-09-20 浏览量:108967
- 【文原创】认真的写了一篇基于SG3525的推挽,附有详细..
时间:2015-08-27 浏览量:103523