高频开关通信电源对蓄电池的影响
摘要:阀控式密封铅酸蓄电池的充电直接关系到蓄电池在实际使用中的寿命。本文介绍目前所采用蓄电池充电技术出现的一些问题,主要是没有真正实现监控和充电方式与蓄电池实际使用状况和要求的完全统一。电池长期运行时的差错得不到及时纠正,因而影响了蓄电池的实际使用寿命。本文从开关电源对阀控电池容量及寿命的影响角度,讨...
阀控式密封铅酸蓄电池的充电直接关系到蓄电池在实际使用中的寿命。本文介绍目前所采用蓄电池充电技术出现的一些问题,主要是没有真正实现监控和充电方式与蓄电池实际使用状况和要求的完全统一。电池长期运行时的差错得不到及时纠正,因而影响了蓄电池的实际使用寿命。本文从开关电源对阀控电池容量及寿命的影响角度,讨论了阀控电池浮充状态的分析判断方法,并提出了通过开关电源在线充放电的控制,来调整阀控电池充电状态的技术,达到对电池在线维护、改善性能、延长寿命的目的。该充电方案可以充分发挥蓄电池的使用价值,用开关电源在线运行方式恢复落后蓄电池组的容量。
关键词:阀控式蓄电池 开关电源 充电参数 在线活化 维护
1 概述
蓄电池是通信系统不间断运行的保证,但在使用过程中,由于各方面的原因会使其性能提前下降、容量降低。当容量降低到一定程度,就要影响到通信系统的正常运行。随着信息社会对通信系统供电安全性和通讯可靠性的要求越来越高,蓄电池本身运行的可靠性和安全性也已经得到了越来越高的关注。然而,从上世纪80 年代使用阀控式铅酸蓄电池开始,20 多年来人们一直被阀控电池的可靠性问题所困扰,往往是市电发生故障了,系统直流电源也跟着就没了,或者只能维持很短的时间。为此人们作了很多探索,提出了很多阀控电池的失效机理,也对阀控电池的测试作了很多研究,从核对性放电到测量单体电压,再到测试电池静态内阻,也有人提出了蓄电池的测试数学模型等等。但是并没有对阀控式铅酸蓄电池提出有效的维护手段。
本文是从蓄电池在线维护的角度出发,详细介绍传统开关电源蓄电池充电技术出现的一些问题。讨论了开关电源充电方式对蓄电池性能的影响,及其充电参数设置和电池容量的关系;提出了对可能发生或已经表现出的落后电池进行在线维护的技术,详细介绍蓄电池在网运行过程中通过不同的阶段 来调整开关电源充电参数方法来提高电池组的性能,延长蓄电池组使用寿命,并以较为成熟和低成本的技术方案予以实现。
2 现行开关电源充电方式不合理之处
移动通信基站开关电源设备目前所采用蓄电池充电方式均未能遵从电池内部的物理化学规律,使整个充电过程存在着严重的过充电和析气等现象,充电效率低。是造成蓄电池容量下降的一个原因。
目前移动通信基站所使用开关电源设备对蓄电池充电方式是传统恒压充电方式,用于技术状态良好的蓄电池进行补充充电是可行的。然而移动通信基站开关电源之所以采用恒压充电方式,充电电源的电压在全部充电时间里保持恒定的数值,随着蓄电池端电压的逐渐升高,电流逐渐减少。与恒流充电法相比,其充电过程更接近于最佳充电曲线。用恒定电压快速充电。由于充电初期蓄电池电动势较低,充电电流很大,随着充电的进行,电流将逐渐减少,因此,只需简易控制系统。 这种充电方法电解水很少,避免了蓄电池过充。但在充电初期电流过大,对蓄电池寿命造成很大影响,且容易使蓄电池极板弯曲,造成电池报废。
采用恒压充电时,一个重要问题就是要选择适当的充电电压,若充电电压选得过高,则充电初期的充电电流就会过大,这对蓄电池不利;若充电电压选得过低,不仅会使充电速度减慢,而且会过早地停止充电,造成蓄电池充电不足。所以若选择的充电电压适当,则既能防止充电初期充电电流过大,又能使蓄电池基本上充足电。恒压充电的缺点是充电电压恒定,充电电流不能控制和自由调节因此不能适应对各种不同技术状态的蓄电池进行充电,同时也不能保证蓄电池彻底充足电。3 开关电源的充电管理
高频开关电源具有电池管理系统。它采用二级监控模式,能对电池的端电压、充放电电流、电池房温度及其它参数作实时在线监测。可准确根据电池的充放电情况估算电池容量的变化,还能在电池放电后按用户事先设置的条件自动转入限流均充状态,通过控制母线电压来完成电池的正常均充过程,并可自动完成电池的定时均充维护,均/浮充电压温度补偿等工作,实现了全智能化,不需任何人工干预。
电池管理的基本思想是:以电池组保有容量、电池充电电流为依据,控制电池由浮充转入均充。以充电电流,充电时间为依据,控制电池由均充转入浮充。如果系统配有温度传感器,其均/浮充电压可根据温度作适当补偿。
保证负载电流基本不变,以电池电流和总负载电流作为主要参考依据(主要输入基准),通过调节模块输出电压及限流点,稳定负载电流,控制电池电流及电压,防止电池充电过流。
电池管理曲线如图1所示。监控模块可以实施对电池的全自动管理。为了实现此功能,各充电模块必须设置在“自动”工作状态。
图1 监控模块的工作曲线
监控模块对电池的智能化管理主要体现在以下三种工作状态中。
3.1 正常充电状态
监控模块自动记录均充和浮充的开始时刻,在上电初始如果监控模块发现均充过程尚未结束,则会继续进行均充。如果上电前是处于限流均充状态,则继续进行限流均充,如果是处于恒压均充状态。则继续进行恒压均充。在限流均充时。当充电电压达到恒压均充电压值的时候,会自动转入恒压均充。
在浮充情况下,若浮充电流大于设定值(转均充参考电流),或电池组剩余容量小于设定值(转均充容量比),则监控模块会自动控制模块进行均充。对电池进行均充时,充电电流应该是监控模块设置的限流值,此阶段为电池恒流充电阶段,电池的电压是随着时间增加而增大的:当电池电压增大到一定值时,充电进入恒压阶段,在恒压阶段,充电电流不断减小,以充电电流减小到0.01C10A为开始计时点,3 小时后恒压充电阶段结束,充电电压降低,投入浮充状态。至此充电过程完成。充电控制曲线如图2所示。
图2 蓄电池正常充电模式
3.2 定时均充状态
用户可选择是否采用定时均充这种维护方式,还可对定时均充的时间间隔及每次均充的时间进行设定。一旦设定。电池管理程序就可自动计算电池定时均充的时间,以便确定在何时启动定时均充,何时停止定时均充,所有这些操作都是自动进行的,运行维护人员可在现场通过监控模块上的显示来明确这一过程,也可在远程监控中心的主机上查看这一过程。一般电池每隔30 天均充一次。
3.3放电后均充状态
交流停电后,电池组放电,给设备供电。再次恢复交流供电时,若电池电流大于设定值(转均充参考电流)。或电池组剩余容量小于设定值(转均充容量比),则监控模块会自动控制模块进行均充。在监控模块的软件设置中,电池放电后,转均充条件有两个:电池现有容量、电池电流。两个条件中的任意一个达到即进行转换。
3.4 温度补偿
用户可选择是否对均/浮充电压进行温度补偿,并可对温度补偿中心点,温度补偿系数进行设置。一旦设定,监控模块就会根据电池房的温度自动对均/浮充电压进行调节。
3.5 容量分析
用户可设置电池的充电效率、放电特性曲线等参数来调整电池容量的计算结果。监控模块可根据电池电流、充放电状态以及充放电系数对电池容量进行估算。公式为Q=IXA,每隔15 秒计算一次电池容量的变化量,并在菜单上实时显示出来,使用户能一目了然地看到电池容量的实时变化。
3.6 自动与手动相结合
监控模块可在“自动”和“手动”两种方式下工作,在“自动”方式下。监控模块可自动完成上述的所有功能,完全不需人工干预:在“手动”方式下,电池的管理交给维护人员来完成。维护人员可手动调节模块的输出电压实现电池的均/浮充转换:通过对模块的限流点调节。实现对电池的限流调节。此时监控模块只通过通讯口采集各模块的数据及配电数据。不对模块作任何控制处理。因而不会在放电后作自动均/浮充转换。也不会启动定时均充,但仍可对电池的容量进行估算。由于长期均充会导致电池寿命下降,为了防止在“手动”方式下均充时间过长,监控模块会自动监视均充时间。当均充时间超过用户设定的定时均充时间时,就会转入浮充。
http://www.21dianyuan.com/supply/supplyhome/company.php?company_id=1544
免责声明:本文若是转载新闻稿,转载此文目的是在于传递更多的信息,版权归原作者所有。文章所用文字、图片、视频等素材如涉及作品版权问题,请联系本网编辑予以删除。
- 【趣味活动】PI 无刷直流电机专题时间:2024年11月25日 - 2024年12月31日[立即参与]
- 仪器使用操作视频教程时间:2024年01月01日 - 2024年12月31日[立即参与]
- 2024年安森美(onsemi)在线答题活动(10月汽车相关)时间:2024年10月01日 - 2024年10月31日[查看回顾]
- PI 智能家居,用“芯”定义为来时间:2024年08月01日 - 2024年09月30日[查看回顾]
- ADI&骏龙趣味闯关活动时间:2024年07月11日 - 2024年10月31日[查看回顾]
- 汽车电子电源行业可靠性要求,你了解多少?
- 内置可编程模拟功能的新型 Renesas Synergy™ 低功耗 S1JA 微控制器
- Vishay 推出高集成度且符合 IrDA® 标准的红外收发器模块
- ROHM 发布全新车载升降压电源芯片组
- 艾迈斯半导体推出行业超薄的接近/颜色传感器模块,助力实现无边框智能手机设计
- 艾迈斯半导体与 Qualcomm Technologies 集中工程优势开发适用于手机 3D 应用的主动式立体视觉解决方案
- 维谛技术(Vertiv)同时亮相南北两大高端峰会,精彩亮点不容错过
- 缤特力推出全新商务系列耳机 助力解决开放式办公的噪音难题
- CISSOID 和泰科天润(GPT)达成战略合作协议,携手推动碳化硅功率器件的广泛应用
- 瑞萨电子推出 R-Car E3 SoC,为汽车大显示屏仪表盘带来高端3D 图形处理性能
众所周知,LED的驱动IC担负着在输入电压不稳定的情况下,为LED提供恒定的电流,并控制恒定(可调)亮度的作用。无论是室内照明,还是车载应用,都肩负着极为重要的使命。
- 关于反激电源效率的一个疑问
时间:2022-07-12 浏览量:13989
- 面对热拔插阐述的瞬间大电流怎么解决
时间:2022-07-11 浏览量:11970
- PFC电路对N线进行电压采样的目的是什么
时间:2022-07-08 浏览量:12502
- RCD中的C对反激稳定性有何影响
时间:2022-07-07 浏览量:9983
- 36W单反激 传导7~10M 热机5分钟后超标 不知道哪里出了问题
时间:2022-07-07 浏览量:7899
- PFC电感计算
时间:2022-07-06 浏览量:5194
- 多相同步BUCK
时间:2010-10-03 浏览量:39069
- 大家来讨论 系列之二:开机浪涌电流究竟多大?
时间:2016-01-12 浏览量:44226
- 目前世界超NB的65W适配器
时间:2016-09-28 浏览量:61363
- 精讲双管正激电源
时间:2016-11-25 浏览量:134122
- 利用ANSYS Maxwell深入探究软磁体之----电感变压器
时间:2016-09-20 浏览量:108969
- 【文原创】认真的写了一篇基于SG3525的推挽,附有详细..
时间:2015-08-27 浏览量:103531